

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Ein Kultplatz entsteht

Rekonstruktion des Bauens und bauliche Rekonstruktion

3D/4D Modellierung und Gegenüberstellung des Bauaufwandes heute und damals

Photos: M & J Kohlus

Dipl. Ing. Rolf Gabler-Mieck

Geographisches Institut Physische Geographie

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Die bauliche Rekonstruktion

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

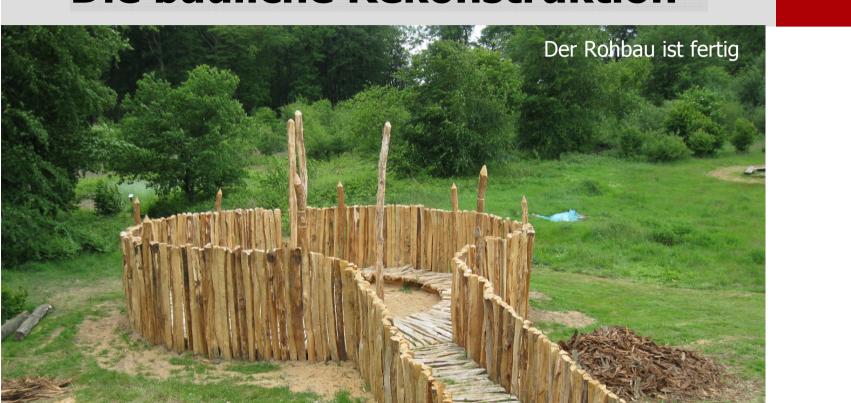
Christian-Albrechts-Universität zu Kiel

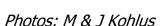
Die bauliche Rekonstruktion

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Die bauliche Rekonstruktion




Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

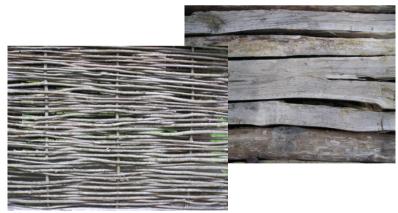
Christian-Albrechts-Universität zu Kiel

Die bauliche Rekonstruktion

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Die bauliche Rekonstruktion


Die virtuelle Rekonstruktion

Datenerfassung

Einmessung des Opferplatzes

- Digitales Orthophoto mit 20 cm Rastergröße
 & Messband
- > Berechnung der Positionen

Photographien von Texturen:

➤ Generierung von Imagetexturen via Photoshop

Datenverarbeitung

- > Berechnung der Geometrie, Eingabe in ArcGIS zur Kontrolle der Lagen
- ➤ Erzeugung eines jungsteinzeitlichen Szenarios in ArcGIS durch Digitalisierung von Vegetationszonen, Dorfgrenzen, Gerstenbeeten, Viehstallungen
- ➤ Graphische Aufbereitung des Planungszenarios zur Kommunikation mit Fachleuten zur Prüfung der Plausibilität des Szenarios.
 - ➤ Erzeugung eines PDF Exportes aus Arc GIS mit Georeferenz (WGS84) und der Möglichkeit Attribute abzufragen

Christian-Albrechts-Universität zu Kiel

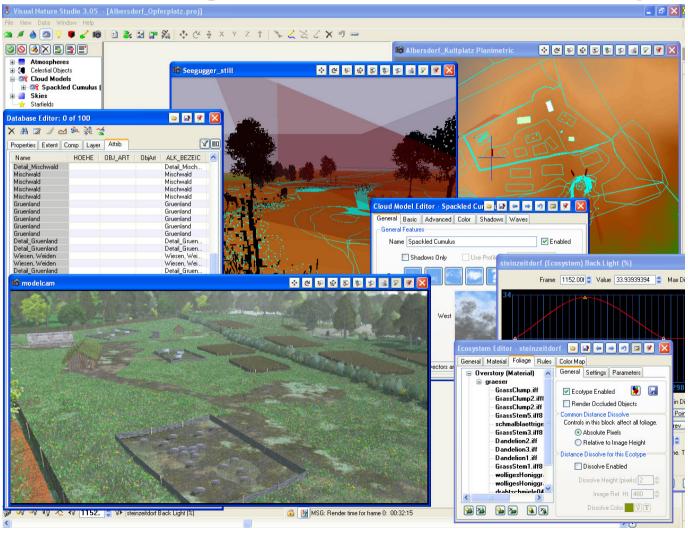
Die virtuelle Rekonstruktion

Modellierung der Landschaft

Modellierung der Jungsteinzeitlichen Umgebung in Visual Nature Studio 3.05

- Basisdaten DGM2 & ALK2008 (Quelle: LVerma.-SH) & der Szenariovektoren
- Informationssammlung und Integration von Vegetation, wie diese in der Jungsteinzeit vorkam
- Erzeugung von Billboards von zeitgemäßen Bäume mit 3D Modellen (*XFrog*) in unterschiedlichen Positionen
- Aufbau und Modifizierung der virtuellen Landschaft durch Platzierung aller relevanten Objekte
- Erzeugung der atmosphärischen Einstellungen (Wolken, Beleuchtung, Dunst, Himmel)

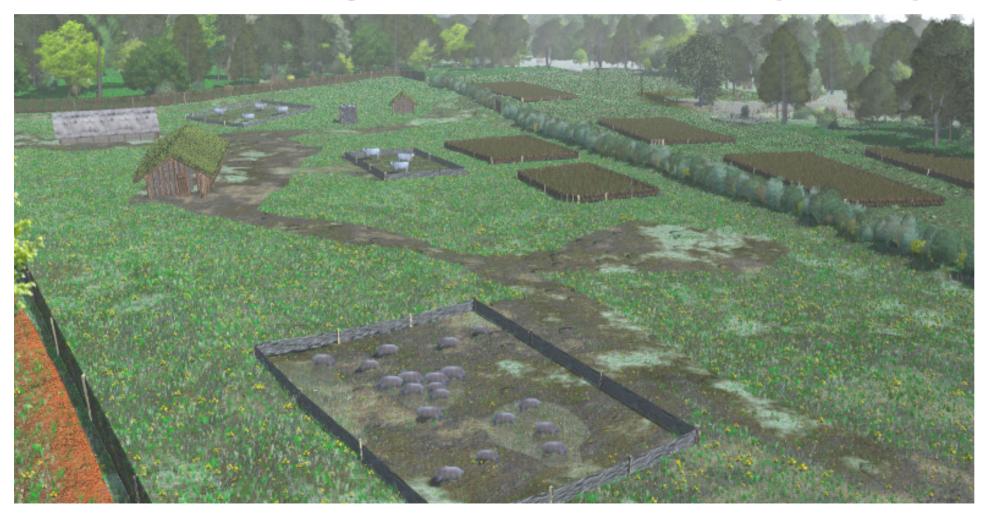
Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät



Christian-Albrechts-Universität zu Kiel

Landschaftsmodellierung mit Visual Nature Studio 3.05 (3DNature)

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät



Christian-Albrechts-Universität zu Kiel

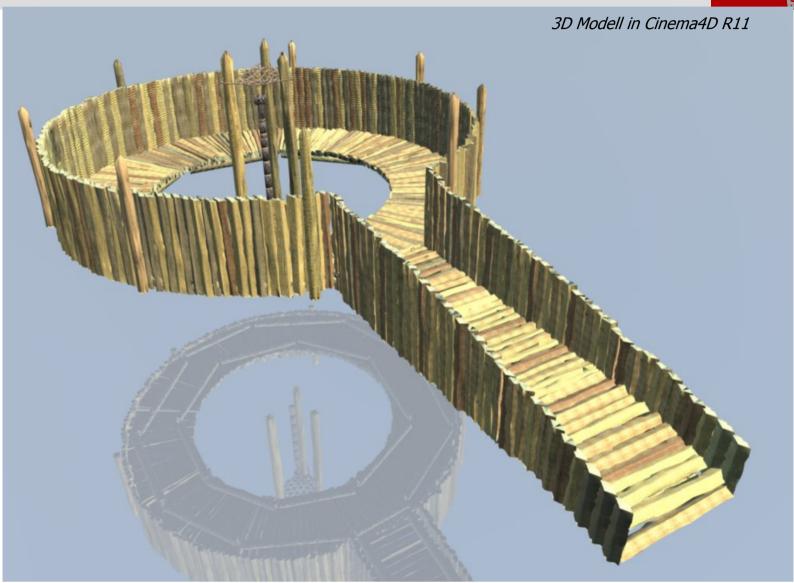
Landschaftsmodellierung mit Visual Nature Studio 3.05 (3DNature)

Christian-Albrechts-Universität zu Kiel

Die virtuelle Rekonstruktion

Modellierung des Opferplatzgebäudes

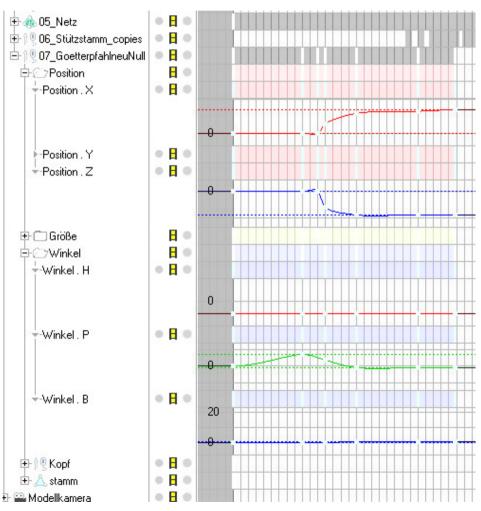
- ➤ 3D Modellierung mit Cinema4D R11
- Erzeugung eines 3D-Eichenstammmodells
- Duplizierung der Stammmodelle
- Individualisierung aller Stämme durch zufälliges Verschieben der Stützpunkte und unterschiedlicher Texturierung
- Positionierung aller Stämme zum Grundbau
- Modellierung des "Götterpfahles" und des "Opfernetzes"



CAU

Christian-Albrechts-Universität zu Kiel

Die virtuelle Rekonstruktion


Christian-Albrechts-Universität zu Kiel

Die virtuelle Rekonstruktion

Animationserzeugung

- ➤ Animation in der Landschaft (VNS)
 - Billboard-Sequenzen (fallende Bäume)
 - "Fällung" eines 3D Stieleiche-Modells
 - Bewegtes Wasser
 - Bewegte Wolken
- Das Opferplatz Modell wurde Stück für Stück abgebaut (c4D)
- ➤ Im Hintergrund Animation der Wolken und des Wassers (c4D)
- ➤ Die erzeugten Bildsynthesen wurden rückwärts in eine Animation (AVI-Datei) überführt.

Keyframeansicht der Animationspfade

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Die virtuelle Rekonstruktion

Stroyboard der Animationsentwicklung:

- > Der Platz wurde ausgewählt
- > Bäume zum Bau werden aus der Umgebung gerodet und abtransportiert
- ➤ Die aufbereiteten Stämme werden zum Errichten des Opferplatzes verwendet
- > Das Opfernetz wird aufgehängt
- > Der "Götterpfahl" wird aufgestellt

Bauaufwandsvergleich

Eine abschätzende Gegenüberstellung des Energieverbrauches: Heute - Jungsteinzeit

Die angedachte **Lösung mittels ArcGIS**, z.B. Networkanalyst, **musste verworfen werden**, da fast **keine Daten** zur Jungsteinzeit
vorhanden sind und diese nur sehr
unscharf sind.

So wurde basierend auf den Angaben von M.Meyer-Kohlus und J. Kohlus der Energieaufwand für heute ermittelt.

Für die Zeitermittlungen der jungsteinzeitlichen Arbeiten erfolgte eine Literatur-Recherche (Dank an Dr. D. Mischka) und die Befragung von Experten der experimentellen Archäologie (Dank an: Harm Paulsen, Tosca Friedrich)

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Bestelltes und verbautes Holz:

Anzahl	Länge	Durch- messer	Art
270	2,00 m	0,13 m	Eichenspaltpfähle 12-14 cm Kantenlänge ungespitzt
240	3,00 m	0,13 m	Eichenspaltpfähle 12-14 cm Kantenlänge gespitzt
40	2,50 m	0,13 m	Eichenspaltpfähle 12-14 cm Kantenlänge gespitzt
40	2,00 m	0,13 m	Eichenspaltpfähle 12-14 cm Kantenlänge gespitzt
32	2,00 m	0,25 m	Eichenstämme ungeschält wie gewachsen
2	8,00 m	0,25 m	Eichenstämme ungeschält wie gewachsen
3	6,00 m	0,20 m	Eichenstämme ungeschält wie gewachsen
6	3,50 m	0,15 m	Eichenstämme ungeschält wie gewachsen
3	4,50 m	0,15 m	Eichenstämme ungeschält wie gewachsen

Insgesamt: ~24 Festmeter [fm] oder ~35 Raummeter [rm] Holz

Basierend auf 12m Eichenstämmen á 0,3 m Stammdurchmesser entsprechen die 35 rm ca. **42 Stämmen.** Bei einer Dichte für trockenes Eichenholz von 670 kg/m³ folgen hieraus etwa **16 t Holz, die zum Bau verwendet wurden.**

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Abschätzung der Arbeitszeiten

Schätzwerte für den Arbeitsaufwand zur Verarbeitung einer Eiche mit 12 m Stamm

Wann	Fällen	Entrinden	Spalten	Anspitzen	Quelle
Heute, Eiche	10,0 min	60,0 min	15,0 min	0,5 min	Forstwirtschaftsmeister
JSZ, Eiche	30,0 min*	150,0 min	120,0 min	0,0 min	Harm Paulsen

Transportzeiten

	Transportwege:	Geschwin- digkeit	Strecke	Zeit Heute	Zeit Jungsteinzeit
Heute	Summe aller gefahrenen Transportwege	75 km/h	3900 km	3120,0 min	
Jungsteinzeit	Annahme: je Stamm 5km	2 km/h	210 km		6300,0 min

Bauzeiten

Bauzeit heute	27780 min		
Bauzeit JSZ**	83340 min		

** Annahme der dreifachen Zeit, abgeleitet aus der Rohstoffbeschaffung

^{*} Quellen schwanken zwischen 20 und 50 min (s. M. Meier Experimentelle Archäologie, Beiheft 4 1990, S275ff & W.F.A. Lobisser, experimentelle Archäologie, Beiheft 24, 1998, S30 & H. Luley, Experimentelle Archäologie, Beiheft 13, 1996, S. 19)

CAU

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Energieaufwand

(Quelle der kCal Daten: http://gesuender-abnehmen.com/abnehmen/kalorienverbrauch.html)

Energieverbrauch	1kg für 1min	Zeit Heute	Gesamt Energie	Zeit JSZ	Gesamt Energie
Baumfällung mit Beil	0,2833 kCal		0 kCal	1242 min	26392 kCal
Bäume entrinden	0,1167 kCal	1806,0 min	15803 kCal	4515 min	39506 kCal
Stämme tragen *	0,1833 kCal		0 kCal	6300,0 min	86625 kCal
Aufbau JSZ (Bauen außen)	0,0917 kCal		0 kCal	83340,0 min**	572965 kCal
Mit Elektrosäge arbeiten (Fällung heute)	0,0750 kCal	414,0 min	2329 kCal		0 kCal
Auto oder einen Kleinlaster fahren	0,0333 kCal	3120,0 min	7800 kCal		0 kCal
Aufbau heute	0,0583 kCal	29580,0 min	129412 kCal		0 kCal
Holz spalten	0,1000 kCal	451,5 min	3386 kCal	3612 min	27090 kCal
Mit Elektrosäge arbeiten (Anspitzen, Heute)	0,0750 kCal	9,4 min	53 kCal	0 min	0 kCal
Transporttechnik		3120,0 min	2109900 kCal		0 kCal

Aufbau
Beschaffung
Transport

2260807 kCal

752578 kCal

Verwendete Werte: Personengewicht 75 kg, KFZ Nutzung wurde mit einem Energieverbrauch von 541 kCal/km ohne Nebenkosten festgesetzt (Quelle: http://www.modernmobilitynews.com/index.php/tag/energiebilanz/)

^{*} Annahme je Stamm 5 km Tragen bei 2 km/h

^{**} Annahme Dreifache Arbeitszeit als heute notwendig (Abgeleitet aus den Holzarbeiten)

Energieaufwand

Energieaufwand:

Heute: 2260807 kCal = 9465547 kj ca. 9,5 Millionen kj

~ 2700 Pizzen (á 350g) oder ca. 2400 km Autofahren inkl. aller NK*

Jungsteinzeit: 752578 kCal = 3150895 kj ca. 3,2 Millionen kj

~ 900 Pizzen (á 350g) oder ca. 800 km Autofahren inkl. aller NK*

Mögliche Aussage:

Der Nachbau des Opferplatzes könnte mit dem **zwei- bis vierfachen Energieverbrauch** angenommen werden.

Ohne Transportenergieverbrauch:

(Heute ohne KFZ & Fahrer, JSZ ohne Stämme tragen)

Heute: 143107 kCal = 599161 kj = **6 Hunderttausend kj**

~ 170 Pizzen (á 350g) oder ca. 150 km Autofahren inkl. aller NK*

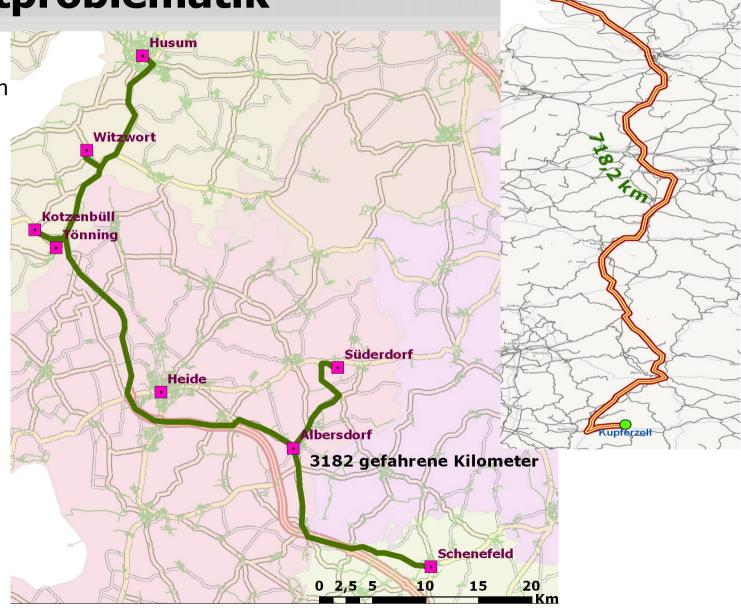
Jungsteinzeit: 665953 kCal = 2788214 kj = **2,8 Millionen kj**

~ 800 Pizzen (á 350g) oder ca. 700 km Autofahren inkl. aller NK*

Mögliche Aussage:

Der Nachbau des Opferplatzes könnte mit **15-25 % des Energieverbrauches** angenommen werden gegenüber dem jungsteinzeitlichem Original.

^{*} Mit NK werden 963 kCal/km angegeben, ohne 541 kCal/km Quelle: http://www.modernmobilitynews.com/index.php/tag/energiebilanz/



Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Transportproblematik

In der Jungsteinzeit wurden die Ressourcen meist aus der unmittelbaren Umgebung genutzt.

Die heutigen Transportwege s. Karten rechts

Was passiert mit dem virtuellen Bau?

Ausblick

- ➤ Im Jahre 2007 wurde vom LGI der CAU-Kiel im Rahmen eines Studienprojektes für das AÖZA eine interaktive Animationsumgebung erstellt, die heute im Empfangsgebäude zu betrachten ist.
- ➤ Die Animation soll in diese Umgebung eingebunden und interaktiv steuerbar gemacht werden
- ➤ Ferner werden die im Rahmen ihrer Diplomarbeiten entstandenen Animationen von Frau S. Schnorrenberger (Thema Erneuerbare Energie) und M. Bald (Thema AÖZA in der Jungsteinzeit ein Auszug...) eingebunden werden.
- ➤ Eine weitere Animation soll integriert werden, welche das heutige Steinzeitdorf in einer jungsteinzeitlichen Umgebung inkl. Opferplatz, Kulthaus und der anderen neuen Gebäude darstellt. <u>Eine Alphaversion...</u>

CAU

Geographisches Institut - Mathematisch-Naturwissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

